Article 7121

Title of the article

Problem research of an open circular waveguide normal waves with an inhomogeneous chiral layer 

Authors

Yuriy G. Smirnov, Doctor of physical and mathematical sciences, professor, head of the sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: mmm@pnzgu.ru
Evgeniy Yu. Smol'kin, Candidate of physical and mathematical sciences, associate professor, associate professor of the sub-department of mathematics and supercomputer modeling, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: e.g.smolkin@hotmail.com 

Index UDK

519.63: 621.372.8 

DOI

10.21685/2072-3040-2021-1-7 

Abstract

Background. The aim of this work is to study the properties of the spectrum of the problem of propagation of electromagnetic waves of an open circular waveguide with an inhomogeneous chiral layer.
Material and methods. To find a solution, the method of operator-functions is used.
Results. Spectral properties of the problem of normal waves of an open circular waveguide with an inhomogeneous chiral layer are studied.
Conclusions. The proposed approach can be applied to study surface waves of regular inhomogeneous open wave-carrying structures with chiral media. 

Key words

electromagnetic waves, Maxwell's equation, operator-function method, chiral medium 

 Download PDF
References

1. Il'inskiy A.S., Shestopalov Yu.V. Primenenie metodov spektral'noy teorii v zadachakh rasprostraneniya voln = Application of methods of spectral theory in problems of wave propagation. Moscow: Izd-vo MGU, 1989:189. (In Russ.)
2. Smirnov Yu.G. The method of operator pencils in boundary value problems of conjugation for a system of elliptic equations. Differentsial'nye uravneniya = Differential equations. 1991;27(1):140–147. (In Russ.)
3. Smirnov Yu.G. Application of the method of operator beams to the problem of eigenwaves of a partially filled waveguide. Doklady Akademii nauk SSSR = Reports of the USSR Academy of Sciences. 1990;312(3):597–599. (In Russ.)
4. Delitsin A.L. On the approach to the problem of completeness of the system of natural and associated waves of a waveguide. Differentsial'nye uravneniya = Differential equations. 2000;36(5):629–633. (In Russ.)
5. Smirnov Yu.G. Matematicheskie metody issledovaniya zadach elektrodinamiki = Mathematical methods for studying problems of electrodynamics. Penza: Inf. –izd. tsentr PenzGU, 2009:268. (In Russ.)
6. Smirnov Yu.G., Smol'kin E.Yu. Discreteness of the spectrum in the problem of normal waves of an open inhomogeneous waveguide. Differentsial'nye uravneniya = Differential equations. 2017;53(10):1298–1309. (In Russ.)
7. Neganov V.A., Osipov O.V. Rasseyanie ploskikh elektromagnitnykh voln na kiral'nometallicheskom tsilindre. Pis'ma v Zhurnal tekhnicheskoy fiziki = Scattering of plane electromagnetic waves by a chiral metal cylinder. Letters to the Journal of Technical Physics. 2000;26(1):77–83. (In Russ.)
8. Bogolyubov A.N., Mosunova N.A., Petrov D.A. Fizicheskie effekty v kiral'nykh volnovedushchikh sistemakh i ikh matematicheskoe modelirovanie. Radiotekhnika i elektronika = Physical effects in chiral waveguide systems and their mathematical modeling. Radio engineering and electronics. 2008;53(8):914–924. (In Russ.)
9. Abramovits M., Stigan I. Spravochnik po spetsial'nym funktsiyam = Special functions reference. Moscow: Nauka, 1979:839. (In Russ.)
10. Kato T. Teoriya vozmushcheniy lineynykh operatorov = Perturbation theory of linear operators. Moscow: Mir, 1972:740. (In Russ.)
11. Gokhberg I.Ts., Kreyn M.G. Vvedenie v teoriyu lineynykh nesamosopryazhennykh operatorov v gil'bertovom prostranstve = Introduction to the theory of linear non-selfadjoint operators in a Hilbert space. Moscow: Nauka, 1965:37–43. (In Russ.)
12. Smolkin E. Numerical Method for Electromagnetic Wave Propagation Problem in a Cylindrical Inhomogeneous Metal Dielectric Waveguiding Structures, Mathematical Modelling and Analysis. 2017;22:271–282.

 

Дата создания: 28.04.2021 08:41
Дата обновления: 28.04.2021 09:14